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Abstract

Arithmetic coding achieves a superior coding rate when encoding a bi-
nary source, but its lack of speed makes it an inferior choice when true high–
performance encoding is needed. We present our work on a practical implemen-
tation of fast entropy coders for binary messages utilizing only bit shifts and
table lookups. To limit code table size we limit our code lengths with a type
of variable–to–variable (VV) length code created from source string merging.
We refer to these codes as “merged codes”. With merged codes it is possible
to achieve a desired level of speed by adjusting the number of bits read from
the source at each step. The most efficient merged codes yield a coder with
a worst–case inefficiency of 0.4%, relative to the Shannon entropy. Using a
hybrid Golomb–VV Bin Coder we are able to achieve a compression ratio that
is competitive with other state–of–the–art coders, at a superior throughput.

1 Introduction

With the rapid progression of computer technology high–performance computing is
becoming cheaper and more widely available. Computer simulations are examining
more complex problems at increasingly greater levels of detail, and these computations
are creating greater amounts of data that must be stored for analysis. For example, a
simulation of a Richtmyer–Meshkov instability and turbulent mixing was performed
at a resolution of 2048 x 2048 x 1920 on the IBM Sustained Stewardship TeraOp
system located at Lawrence Livermore National Laboratory [8]. The simulation run
generated over three terabytes of data which needed to be compressed and stored.
We would like to add to simulation codes the ability to encode data on the fly, before
it is written to disk. Such an entropy coder must have a high throughput that is not
adversely affected by changes in the incoming data. This minimizes degradation of
the computation’s performance, and ensures that the amount of degradation is known
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and relatively constant, no matter the data being encoded. The coder must also have
good compression ratios, so that the resulting compression is worth the computational
expense. Arithmetic coders and their variants achieve excellent compression ratios,
but their speed varies for different bit distributions, and this makes them unsuitable
for a high–performance computing application.
We present here some results stemming from our work on developing a fast entropy

coder that performs only bit shifts and table lookups during the coding process. When
using lookup tables the symbol and code lengths become critical, since the number
of entries in the decode table is dictated by the length of the longest codeword. To
place a limit on the sizes of our code tables, our coder uses merged source string codes
(hereafter referred to as “merged codes”), which are a type of variable–to–variable
length (VV) code. Each code has a source window of W bits, reading up to W bits
per coding iteration, and outputs a codeword that is up to C bits in length. When
referring to a merged code created with a specific (W,C) we call it a (W,C) merged
code.
We create a set of optimal VV code tables for codes restricted to string lengths

of 15 bits and code lengths of 13 bits. We use these tables along with Golomb codes
in a hybrid bin coder that is able to encode a binary source with a compression ratio
comparable to state–of–the–art arithmetic coders, but at a superior throughput.
Our work is related to the State–Tree Code (STC) adaptive VV coding method

proposed in [11], but differs in some respects. The STC’s codes are generated from a
set of parse trees with a specified number of leaves. The codes used are optimum—
generated through an exhaustive search—and the number of strings in the code is
necessarily kept small (8– and 16–leaf parse trees are used). Our codes are merely
optimal within a limited search space, but have a higher leaf count. We do not care
how many leaves are in the parse tree, we only concern ourselves with the longest
code length. Also, the STC does not divide up source bits according to probability,
but only switches code trees after encoding a binary string from the source.

2 Encoding a Binary Source

2.1 Review and Terms

Given a binary memoryless source each bit bi in the source has a probability of being
either a 0 or a 1, denoted respectively by the pair (pi, qi). We assume without loss
of generality that the more probable symbol is 0, that is, q ≤ 0.50. For a binary
memoryless source with probabilities (p, q) the entropy H of the source is defined as
[9]:

H(p, q) = −(p log2 p+ q log2 q). (1)

From this we define the coding inefficiency I of a coder K at (p, q) as

IK(p, q) =
RK(p, q)−H(p, q)

H(p, q)
× 100 (2)
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where RK(p, q) is the coding rate of coderK at (p, q). RK(p, q) for a coder is computed
empirically as

RK(p, q) =
num bits out

num bits in
(3)

Given a binary memoryless source and a parse tree of strings for the source, a string s

of some length |s| has a weight w = pzqy, where z is the number of zeros in the string
and y is the number of ones. If the parse tree recognizes N strings, we compute the
theoretical coding rate as

RK(p, q) =

∑N
i=1
|ci|wi

∑N
i=1
|si|wi

(4)

where |ci| is the length of the prefix–free codeword assigned to si. Theoretical ineffi-
ciency refers to I computed with a theoretical R, while empirical inefficiency refers to
I computed with an empirical R. In this work we consider a code to be efficient if it
is within 1% of the source entropy, i.e I ≤ 1. We define a code’s point of inefficiency,
as q tends to 0, as the value of q at which the inefficiency curve goes above 1% and
does not return below it.

2.2 Methods and Prior Work

A binary source can be encoded bit–by–bit, or by creating a parse tree for the source,
thus creating a set of binary strings that may appear in the source, and encoding the
source one string at a time. Binary arithmetic coders [17] use the former approach.
They give a theoretically superior coding rate, but are slow. Golomb codes [5] also
use this approach, and for skewed probabilities can quickly encode runs of bits at a
time, but Golomb codes are unable to encode efficiently at certain probabilities.
For speed, encoding a source in blocks or strings is preferred, as table lookups can

be used to get string–codeword associations. There are three common types of codes
that lend themselves to table–lookup methods: Block–to–Variable (BV), Variable–
to–Block (VB), and Variable–to–Variable (VV).
Probably the best–known example of the BV codes is the use of the Huffman

algorithm [6] to generate codes for encoding byte data, such as ASCII text. This
method can also be used to encode binary data in n–bit blocks, resulting in 2n possible
binary strings. The best example of the VB codes is the Tunstall algorithm (reviewed
in [2]). In this method the parse tree is grown by splitting and extending the most
probable leaf until there are 2n leaves. Then n–bit codewords are assigned to each
leaf.
The most common way of creating a VV code uses a variant of the Tunstall exten-

sion approach to create the parse tree, and uses the Huffman algorithm to generate
the code words. To our knowledge all work in VV code algorithms [3, 4, 10, 11] fo-
cuses on selecting a leaf for extension such that the resulting parse tree gives the best
coding rate. The process of determining which leaf to extend is notoriously difficult,
and the problem of finding an optimal VV code is NP–Complete [12].

3



All methods based on table lookups have a potential problem: for a direct lookup
table approach the number of entries in the encoding and decoding tables is a power
of 2 of the length of the longest string or codeword. Even a reasonably small string
or code length may result in an undesirably large lookup table.
In these situations length–limited (LL) codes are preferred. The best–known al-

gorithm for generating length–limited codes is the Package–Merge (PM) algorithm
[7, 13, 14]. PM can often reduce the longest code length dramatically, with a miniscule
cost to coding efficiency. Figure 1 shows the coding inefficiency of the most efficient
codes generated by the Tunstall, Huffman, and PM algorithms, where symbol and
code lengths are not allowed to be over 15 bits. For the Huffman and Tunstall meth-
ods, length limiting is performed by respectively shortening the input and output
block lengths.

3 Length–Limited VV Codes

When length–limited codes are required an alternative to PM and related methods
is the family of VV codes. Despite the difficulty in creating and analyzing them
theoretically, VV codes are ideal for length–limited binary encoding. They give a
throughput superior to arithmetic coders and have a competitive coding rate.
Since we consider this from the viewpoint of needing length–limited codes, we

generate VV codes through contraction, via a greedy process we term “source string
merging”. Conceptually, givenW and C, we generate a complete, balanced parse tree
with 2W leaves, where the path length to each leaf is W . Code lengths are generated
for the strings, and the word with the longest code length is merged, along with
its sibling, into its parent, which then becomes a leaf. The process repeats until all
code lengths are ≤ C. In essence the merging process transforms a BV code into a
VV code. Given (p, q) and (W,C) the merging algorithm is shown in figure 3. The
reasoning behind source string merging is akin to that of PM: the least likely items
can be manipulated, because they will affect the overall coding rate the least. Unlike
PM, the merging process alters or eliminates source strings, and this can increase the
efficiency of the resulting code.

3.1 Theoretical Inefficiency of Merged VV Codes

We examined merged VV codes created with an input bit window size 7 ≤ W ≤ 15,
and an output code length limit 7 ≤ C ≤ 13. For each value of q, at a granularity of
0.01 we created a coding table with the parameters (W,C). For each table we mea-
sured its inefficiency at the table’s q and at ±0.001, ±0.002, etc., until the inefficiency
in both directions went above 5%. For each value of q at a granularity of 0.001 we
recorded which table was most efficient.
Figure 2 shows the inefficiency curve that results if for each value of q the most

optimal code is selected from among those created in our study. The reduction in
inefficiency is dramatic. Excluding the value where the curve rises to the point of
inefficiency a coder using these codes would have a worst-case inefficiency of 0.4%.
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Figure 1: Coding inefficiency of length–
limited codes.
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Figure 2: Coding inefficiency of most op-
timal codes.

Generate all 2W source strings

Compute each strings’ weight

Compute a code length ci for each string

while ( ∃ c > C) {

select string with longest code length c

merge with sibling into parent

compute weight of new, shorter string

reassign code lengths to all strings

}

Generate prefix–free codes

Figure 3: Example of merging leaves on the source parse tree. Underlined numbers
are code lengths.

4 A Hybrid Bin Entropy Coder

VV codes are extremely difficult to adapt and this means that their only practical
use is for encoding a memoryless source. The only way to use VV codes to encode a
source where the bit probabilities may change is to have a collection of code tables
on hand and swap tables on the fly as needed or, more practically, use a bin coder,
each bin designed for a certain probability range. As the probability of each bit is
determined the bit is placed into the appropriate bin.
Bin coders are not usually thought of as being a good solution because the binning

operations hurt performance. This is true only because most applications of bin cod-
ing seek to interleave the bin outputs into a single coded bitstream. The interleaving
process requires that the encoder maintain bin priorities, and add extra bits (“flush
bits”) to bins to force output when needed. Usually bin outputs are interleaved on
a codeword–by–codeword basis. This type of fine–grained bin interleaving is appro-
priate for circumstances such as live streaming over a single channel, but may not be
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necessary for other applications, such as batch processing large amounts of data. A
much coarser level of interleaving (or none at all, in the extreme case) can be used
with a corresponding decrease in the overhead, and increase in the execution speed
and compression ratio.
Figure 2 shows that the VV codes’ point of inefficiency is about q = 0.04. To

encode bits that fall into 0 < q ≤ 0.04 an alternative coding method is needed,
and we choose Golomb coding. In this range the expected run lengths are such that
optimizations can be made to quickly encode runs of bits in a single block and not
bit–by–bit. We therefore propose a hybrid bin scheme: all bins below q = 0.04 use
Golomb coding, and all others use VV codes.

5 Results

We created a two hybrid bin coders, one with with 22 bins and the other with 25.
In each case the coder used 18 VV code bins, and the remaining were Golomb bins.
VV codes used were selected from those created in our study. These coders perform
no interleaving. We compared our bin coders to three other coders: the Augmented
ELS coder [15]1, the Z–coder [1]2, and an arithmetic coder written by us. The ELS–
Coder does not appear to have been designed with speed as a concern [16], but we
include it because its coding rate is state–of–the–art. In this work we are interested in
measuring and comparing the efficiencies of the coders themselves, not the efficiency
of the probability estimation techniques developed for these coders—we supply the
bits and the probabilities to be used to encode them. We therefore decoupled the
the actual coders from their state tables and from each state table created a lookup
table so that, given a bit and a probability, the coder could obtain the information it
needed.
In all of our tests we assume without loss of generality that the least probable bit

is a 1, and all our results are given with respect to q, the probability of encountering a
1. We tested each coder on nonstationary sources, where q varies bit–to–bit. To test
for a nonstationary source we created a block of 256 probabilities, given according to
the following equation:

P (i) =
ix

2× 256x
, 0 < i ≤ 255 (5)

where 1 < x ≤ 10.1 is a floating–point parameter that determines the probability
distribution, and i is an integer. The resulting probabilities were converted to the form
used by each coder. After a block was generated it was permuted, and a 30 megabytes
bitstream was generated by repeatedly iterating through the block, generating one
bit per entry based on the probability in that entry.
Timings were taken on a 1–GHz Intel Pentium III computer running Red Hat

Linux. All execution times given are an average over 5 runs. Execution time for the
bin coder is a total of time to both bin and encode all the source bits. Results for

1ftp://www.pegasustools.com/Osaugels.zip
2http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/djvu/djvulibre-3.5/libdjvu
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the execution times of the coders are given in figure 4. Time results for the 25–bin
coder were similar to the 22–bin one, and are not shown. The “Exponent” axis values
indicate the parameter x, used to determine the bit distribution.
Figure 5 gives the coding inefficiency of each coder, as computed by equation 2.

For more skewed probability distributions there is some experimental error, which is
particularly apparent with the arithmetic coder in the form of its negative inefficiency.
This is due to using an insufficient number of bits when taking the measurements at
these skewed probabilities.
A more informative picture of the results is figures 6 and 7, comparing the ELS,

Z, and Arithmetic coders respectively to the 22– and 25–bin hybrid coders. These
figures give a graph of each coder’s execution time versus its inefficiency. Smaller
values are better, so an ideal coder would be one that is close to the origin, having a
small inefficiency and fast execution time.
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Figure 4: Execution time of the coders.
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Figure 6: Coding Inefficiency vs. Time of
the 22–bin hybrid bin coder.
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6 Discussion

From figure 4 we see that the Bin Coder’s execution time is generally the same for
all bit distributions. This is a plus—assuming that the incoming bits’ probabilities
are reasonably modeled the execution time is consistent. The other coders’ execution
times vary as the bit distribution varies.
From figures 6 and 7 we see that the the addition of three more Golomb bins has

reduced the inefficiency dramatically while leaving the execution time unchanged. We
also note from figure 5 that the 25–bin coder’s best–case inefficiency has improved
from 0.27% to 0.23%, when x = 1.1. This indicates that proper handling of the
extreme probability ranges is essential, even in cases where the percentage of bits
that fall into the extreme ranges is the same as those that fall into other ranges.
The bin coders in this study do not perform output interleaving. For future work

we will be implementing a bin coder that does perform output interleaving, but at a
coarse granularity (interleaving outputs megabytes at a time rather than a codeword
at a time). We would would also like to study further the interaction between the
number and type of bins, and the coder’s performance.
We think that a hybrid bin coder holds promise for high–performance computing

applications. The methods used in the bins (Golomb and VV coding) are fast, simple
mechanisms, and the indications are that on a common architecture its performance
rivals that of state–of–the–art coders.
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